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Gauge invariance and the space-translation method 

Donald H Kobe 
Department of Physics, North Texas State University, Denton, Texas 76203, USA 

Received 24 May 1983 

Abstract. The space-translation method for treating the interaction of electromagnetic 
radiation and matter in the electric dipole approximation is investigated from the standpoint 
of gauge invariance. Unless the wavefunction of the space-translation method is properly 
transformed, the probability of finding the system in an energy eigenstate is not in general 
correct. In the electric dipole approximation the probability of finding the system in an 
energy eigenstate is most conveniently calculated in the electric field gauge where the 
interaction is of the length form. The length form of the interaction is not in general equal 
to the velocity form or the acceleration form which comes from the space-translation 
method. The charged harmonic oscillator is used as an example. 

1. Introduction 

The space-translation method (Kramers 1950), which uses the Hertz potential, was 
proposed by Henneberger (1968) as a new method for treating the interaction of 
electromagnetic radiation and matter in the electric dipole approximation. It was 
proposed as a method which could be used in intense electromagnetic fields because 
for some problems non-perturbative solutions could be found (Choi et a1 1974, 
Henneberger 1977, Brandi et a1 1978). If the field is sufficiently weak, a Taylor series 
expansion of the potential can be made and the terms of first order and higher can be 
treated by perturbation theory (Lambropoulos et a1 1976, Knight 1977). 

In this paper the space-translation method is discussed from the standpoint of gauge 
invariance. In the manifestly gauge-invariant formulation of quantum mechanics given 
recently (Kobe and Smirl 1978, Kobe 1978, 1979a, b, Yang 1976), any gauge can be 
used, and the same results are guaranteed. The gauge-invariant energy operator, which 
is the sum of the kinetic energy operator and the potential energy operator V, 
determines the appropriate energy eigenstates and eigenvalues of the system. The 
kinetic energy operator is proportional to the square of the kinetic (i.e. mechanical) 
momentum n = p -  qA/c, not the canonical momentum p,  where A is the vector 
potential and q is the charge. In an arbitrary gauge the probability amplitude for finding 
the system in an energy eigenstate is the inner product between the energy eigenstate 
and the wavefunction which is a solution to the Schrodinger equation in the same gauge 
(Yang 1982). This probability amplitude is gauge invariant because under a gauge 
transformation both the energy eigenstate and the wavefunction change by the same 
phase factor. 

In the electric dipole approximation (EDA), the electric field gauge (Kobe 1982) 
can be used in which the vector potential is zero and the scalar potential is - E  r, 
where E is the electric field at the origin and r is the displacement of the electron. 
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In this gauge the kinetic momentum tr reduces to the canonical momentum p,  and the 
energy operator reduces to the unperturbed Hamiltonian Ho = p2/2m + V. This sim- 
plification of the energy operator in the electric field gauge to Ho is the fundamental 
reason why it is convenient to use the electric field gauge with the scalar potential 
- E  r. The reason is not that E and r are both gauge-invariant operators, which 
they of course are. 

The space-translation method (Henneberger 1968) can be used as a technique for 
solving the Schrodinger equation (Choi et a1 1974, Henneberger 1977, Brandi e? a1 
1978), but care must be used in its interpretation. To obtain the time-dependent 
probability that the system is in an energy eigenstate it is necessary to transform the 
wavefunction obtained in the space-translation method to a solution of the Schrodinger 
equation in a definite gauge before taking the inner product with an eigenstate of the 
energy operator in the same gauge. This procedure is most easily done by transforming 
the space-translation method wavefunction to the wavefunction which is the solution 
to the Schrodinger equation in the electric field gauge with a zero vector potential and 
a scalar potential which is - E  r. Then the energy eigenstates are eigenstates of the 
unperturbed Hamiltonian Ho = p2/2m + V. The eigenvalues E,, of the unperturbed 
Hamiltonian are the ‘bare’ energy eigenvalues, and the effect of the electric field in 
‘dressing’ them can be calculated by perturbation theory (Kobe 1983). If expectation 
values of operators are to be calculated in the space-translation method, it is necessary 
to transform the wavefunction to the solution of the Schrodinger equation in the gauge 
in which the operators are given. Equivalently, the operators can be transformed to 
correspond with the space-translation wavefunction. By following the gauge-invariant 
procedure the results of a calculation are not dependent on a fortuitous choice of gauge. 

The space-translation method has been criticised by Vermani and Beers ( 1975). 
They showed that the velocity form of the interaction (A  p )  and the space-translation 
method do not give the same probability for finding the system in the same state. Choi 
et a1 (1975a) replied that near resonance the two probabilities are almost equal, and 
that small oscillatory terms can be neglected. They failed to answer what happens 
away from resonance where there is an appreciable difference. The assumption of 
Vermani and Beers (1975) is that the velocity form of the interaction gives the correct 
probability. As has been shown previously (Kobe and Wen 1982, 1980), the velocity 
form of the interaction does not in general give the correct time-dependent prob- 
abilities. Therefore lack of agreement between the space-translation method and the 
velocity form of the interaction does not imply that the space-translation method 
necessarily gives incorrect probabilities. In this paper it is shown that the direct 
calculation of probabilities from the space-translation method is indeed incorrect 
because it does not agree with the gauge-invariant probabilities. 

To illustrate these ideas, a charged harmonic oscillator in one dimension in an 
electromagnetic field in the electric dipole approximation is considered. This problem 
has been solved exactly (Heffner and Louise11 1965, Merzbacher 1970) and the 
probability that the system is in a given energy eigenstate has been calculated (Kobe 
and Wen 1982, 1980). The same result should be obtained from the space-translation 
method. It is if the wavefunction of the space-translation method is properly trans- 
formed to the wavefunction corresponding to the interaction -qEx. However, if the 
inner product of the unperturbed wavefunction and the space-translation wavefunction 
is taken, gauge-dependent amplitudes are obtained. Their absolute values squared do  
not give the same result as the gauge-invariant formulation, except in the special case 
of resonance between the oscillator and a harmonically varying field. 
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In 0 2 the space-translation method is briefly reviewed. In 0 3 the manifestly 
gauge-invariant formulation is given and compared with the space-translation method. 
Expectation values of operators are discussed in § 4. In § 5 a charged harmonic 
oscillator in one dimension in an electromagnetic field in the EDA is used to compare 
the gauge-invariant formulation and the space-translation method. The conclusions 
are given in 0 6. 

2. Space-translation method 

The Schrodinger equation for a particle of mass m and charge 4 in an external 
electromagnetic field characterised by the vector potential A and scalar potential A() 
is 

[(1/2m)(p-qA/c)’+ V+qA,,]+ = i A  a t h / d t ,  (2.1) 

where V ( r )  is a potential energy. We shall consider the electric dipole approximation 
so the spatial dependence of the vector potential can be neglected, A(r, t )  = A(0, t )  = 
A(t)  since the wavelength of the radiation is assumed to be long compared with the 
dimension of the atomic system, and magnetic effects on the system are neglected 
(Kobe 1982). The sources of the external radiation are at infinity, so the scalar potential 
can be chosen to be zero, A. = 0. Under these approximations, (2.1) can be written as 

( & p 7 +  V(r) -LA 2 mc 

by expanding the quadratic term. By making a unitary transformation on (2.2), 
Henneberger (1968) showed that it could be expressed as 

[ (1/2m)p2+ ~ ( r + a ) ] * = i i h  a * / a .  (2.3) 
The vector a is 

a = -4Z(  t ) /  mc, 

where the Hertz potential Zit) is defined so that 

A(?)  = a Z ( t ) / a r .  

The electric field E is related to the vector potential by 

E = -dA/atc, 

(2.4) 

since the scalar potential is taken to be zero. The new wavefunction 9 in (2.3) is 
related to the old wavefunction 4J in (2.2) by a unitary transformation 

* = eS+ (2.7) 
where the operator S is 

It is assumed that the electromagnetlc field is turned on at time zero. Although (2.7) 
is a unitary transformation on the wavefunction, it is not a gauge transformation 
because of the operator term a * V. Under some circumstances Henneberger (1968) 
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says that (2.3) may be simpler t o  solve than (2.1) in this approximation. If the field 
is intense, perturbation theory may not be valid, and non-perturbative methods may 
be needed to solve (2.3) (Lambropoulos et a1 1976, Knight 1977). 

Equation (2.3) may be written in terms of an  ‘unperturbed Hamiltonian’ 

Ho1 = p 2 / 2 m  + Vl(r) ,  (2.9) 

as 

[H,,+ V ( r + a ) -  Vl(r)]9=iiAa9/at. (2.10) 

Henneberger (1968) proposed that for an intense field V,(r)  be chosen as the time 
average of V ( r +  a (  t ) ) ,  as a way to include the effect of the intense field on the energy 
levels. However, any criterion for choosing VI could be used which could make 
V ( r  + a )  - V,(r)  small in some sense. There is thus no unique physical prescription 
for determining V,. 

If we choose V, = V in (2.9), the unperturbed Hamiltonian becomes 

H,, = p2 /2m + V(r) .  

[ H , + u  - V V ( r ) + t ( a  * V)’V(r)+. . . ] ~ r = i h ~ ~ / a t .  

(2.11) 

If a power series expansion of V (  r + a )  is made, (2.3) becomes 

(2.12) 

If a is sufficiently small only the first term in the expansion need be retained. It is the 
a V V form of the interaction between matter and electromagnetic radiation which 
is sometimes called the ‘acceleration form‘ (Power and Thirunamachandran 1978). 
This form of the interaction is valid only under very special conditions. 

The  unperturbed Hamiltonian Hn satisfies the eigenvalue equation 

H04n = En4n, (2.13) 

with eigenfunctions 4, and eigenvalues E,. If (2.3) o r  (2.10) is solved to  obtain the 
wavefunction 9, the amplitude 

hn( t )  = (dnlW)) (2.14) 

is conventionally interpreted as the ‘probability amplitude’ such that Ib,I2 is the 
‘probability’ of finding the system in the state d,,. However, the ‘probability’ calculated 
in this way does not agree in general with the probability calculated from the gauge- 
invariant formulation of quantum mechanics. The manifestly gauge-invariant formula- 
tion of quantum mechanics, discussed in 9 3, guarantees that the probabilities a re  gauge 
invariant. 

3. Gauge-invariant formulation 

The manifestly gauge-invariant formulation of quantum mechanics developed 
recently (Yang 1976, Kobe and Smi11 1978, Kobe 1978, 1979a, b) guarantees that 
the probability of finding the system in an energy eigenstate is gauge invariant. In this 
formulation it is observed that the canonical momentum operator p=- ihC has a 
gauge-dependent expectation value, while the kinetic momentum T = p -  q A / c  has 
a gauge-invariant expectation value. The manifestly gauge-invariant theory is based 
on the gauge-invariant energy operator (Yang 1976) 

(3.1) %‘(A) = rr’i2m + V (  r ) ,  
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which satisfies the eigenvalue equation 

%(A)$, = E n $ n ,  (3.2) 

with eigenvalue E ,  and eigenstate $,. The inner product of the wavefunction $ in 
(2.1) with an energy eigenstate 4, in (3.2) is the amplitude 

c f l ( t )  = ( $ , ( t ) I W ) ) .  (3.3) 

The amplitude cfl is manifestly gauge invariant because when the gauge is changed 
both $, and $ are changed by the same phase factor. It can thus be properly interpreted 
as a probability amplitude, and P, = / c , ( t ) I 2  is the probability of finding the system in 
the state $, at time t. 

In the EDA the calculations are simplified by using the electric field gauge (Goeppert- 
Mayer gauge) (Kobe 1982) where 

A ‘  = 0, AI, = -E(O, t )  * r, (3.4) 

since magnetic effects are neglected. These potentials are obtained from the Coulomb 
gauge vector potential in the EDA A = A(0,  t ) ,  Au = 0 ,  by the gauge transformations 

A ’ = A + V . \  (3.5) 

A;, = A(, -  C - ‘  d21/Jt, 

and 

(3.6) 
where the gauge function 12 is 

.2(r, t )  = -A(O, t )  r. (3.7) 

If a new wavefunction $’ is defined as 

$’ = exp(iqL2/hc)$, (3.8) 

[If , , -qE(O.  t )  * r ] 4 ’  = ih d $ ‘ / d t ,  

it satisfies the Schrodinger equation 

(3.9) 
which is gauge equivalent to (2.1) in the EDA. The unperturbed Hamiltonian I f o  is 
given in (2.11) and satisfies the eigenvalue equation in (2.13). 

For the choice of potentials in (3.4), A’ = O  and the kinetic momentum n’ = 
p-qA‘/c  reduces to the canonical momentum p .  Therefore, the energy operator in 
(3.1) reduces to 

(3.10) 8 ( A ’ )  = 8 ( 0 )  = H,,, 
the unperturbed Hamiltonian in (2.11). In this gauge (3.2) becomes 

Z(A’)G;) = E , ~ $ L ,  (3.11) 
where the eigenstate $:, transforms as in (3.8). 

Since A’=O in (3.41, equation (3.11) reduces to  the unperturbed eigenvalue 
problem in (2.13), with ILL = c$,, and E,, = E,. The gauge-invariant probability ampli- 
tudes in (3.3) are then 

c,, =(dbl$’L (3.12) 

which are not in general the same as the amplitudes b,, in (2.14). In order to express 
gauge-invariant amplitudes c,, in terms of the wavefunction V in (2.3). 9’ must be 
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written in terms of V, 
c, =(4,lexp[-iqA(t) r / h c ]  exp(-S)W, (3.13) 

where S is given by (2.8). This expression is quite different from b, = (4,,1Y) in general, 
since both the exponentials in (3.13) involve the space and time coordinates together. 
However, in the limit as t +m,  Ic,(t)12 and lb,(t)I2 both approach the same limit if 
A( t )  and Z ( t )  are chosen such that both approach zero. This situation occurs if the 
appropriate adiabatic switching hypothesis is made. 

4. Expectation values 

If an operator corresponds to an observable, it must have a gauge-invariant expectation 
value (Kobe and Yang 1980, Cohen-Tannoudji et a1 1977). Suppose @(A,Ao)  is 
an Hermitian operator depending on the potentials A and A, corresponding to an 
observable, and the solution of the Schrodinger equation with these potentials is &. 
The operator in another gauge is @(A’, Ah), where the new potentials A’ and Ah are 
defined in general by (3.5) and (3.6) for arbitrary A = h(r, t ) .  The solution of the 
Schrodinger equation with the new potentials is $’, which is related to the solution of 
the Schrodinger equation with the old potentials by (3.8). The gauge invariance of 
the expectation values then demands that 

($l@(A, A,,)$)=($‘l@(A’, Ah)$’). (4.1) 
However, from (3.8) the matrix element on the left-hand side of (4.1) can be 
written as 

(4.2) 
where the unitarily transformed operator 0’ is 

($l@(A, A,)$) = ($’I@‘(A? A,)$’), 

@’(A, A,) = exp(iqA/hc)@(A, A,) exp(-iqA/hc). (4.3) 

For the operator 0 to be an observable it must be form invariant under gauge 
Equation (4.3) is called a gauge transformation on the operator. 

transformations (Kobe and Yang 1980, Cohen-Tannoudji er a1 1977) 

@’(A, A,) =@(A’ ,  Ab). (4.4) 
A gauge transformation on the operator must induce a gauge transformation on the 
potentials. 

Because of (2.7) the expectation vaiue in (4.1) is equal to 

($/@(A, Ao)4)=(VI@s(A, A,)*) (4.5) 
where 9 is the solution of (2.3) and 

Os(A, A,) = eS@(A, A,)ePS. (4.6) 
The operator Os(A, A,), although unitarily related to @(A, Ao), does not in general 
have the same form as @(A, A,). Equation (4.6) is not a gauge transformation on the 
operator because (2.7) is not a gauge transformation on the wavefunction, because 
the operator S involves V .  

To illustrate the transformation of operators, consider the kinetic momentum 
n = p - qA( r, t ) / c ,  and the operator .rr, = ih a / a t  - qAo( r, t ) .  In the Coulomb gauge 
and the EDA these operators are .rr=p-qA(O, t ) / c  and rro=ih a/at .  Under the 
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transformation in (4.6) TT is unchanged, 

m s = ~ = p - q A ( O ,  t ) / ~ ,  (4.7) 

and ro becomes 

( rJS =ih a/at-(q/mc)A(O, t)  + p+(q2/2mc2)A(0,  t ) 2 ,  (4.8) 

which has a quite different form from roe For a function F ( r )  the new operator is 

F , ( r ) = F ( r + u ) .  (4.9) 

Therefore it is necessary to transform the operators also when using the solution 9 
in (2.3) of the space-translation method. 

The energy operator %(A)  in (3.1) in the EDA upon the unitary transformation 
in (4.6) becomes 

(4.10) '&,(A) = (2m)-'[p--qA(O, t)/c]'+ V ( r + a ) ,  

from (4.7) and (4.9). Eigenstates V,, of this operator are 

q n  = eS+n, (4.11) 

with eigenenergies E,, from (3.2). In the space-translation method, the proper gauge- 
invariant probability amplitudes c, can thus be written as 

c, , ( t )  = ( ~ , I l ~ L  (4.12) 

which is equal to (3.13). 

5. Charged harmonic oscillator 

In order to illustrate the differences between the amplitudes c, and b,, a charged 
harmonic oscillator in one dimension in an electromagnetic field in the EDA is considered 
as an example. The exact solutions of (2.2) and (3.9) in one dimension with the 
potential V = imw2x2  have previously been given (Kobe and Wen 1982, 1980). The 
exact solution of (2.3) can likewise be found. 

For a harmonic oscillator in one dimension (2.3) becomes 

[ (2m) - ' p2+~mw2(x+a j2 ]9  =ih av/at. (5.1) 
If the quadratic term in (5.1) is expanded, it can be written as 

( Ho + mw ' ax  + i m w 2 a 2 ) 9  = ih a91at .  (5.2) 
The term imw2a2 contributes only a time-dependent phase factor to 9. The interaction 
term 

mu'ax = - q w 2 Z ( t ) x / c  (5 .3 )  
should be compared with the interaction - q E ( t ) x  in (3.9) for one dimension. In 
general the two interactions are not equal. 

For a harmonically varying electric field 

E(t)=E,sin(Qf+O),  (5.4) 
with frequency $3 and phase 8, the Hertz vector in (2.5) is 

Z(t) =(cE,/Q') s in(n t+  e ) + [ A ( O ) - ( c E , , / n )  cost9]t+[Z(0)-(cEo/Q2) sine]. (5.5) 
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This expression involves the arbitrary initial values of the vector potential A(0) and 
the Hertz potential Z(0).  Thus the interaction in (5.3) is not well defined because the 
initial values of A and 2 must still be specified. Different results are obtained if 
different values of A(0) and Z(0) are used. For simplicity the choice A(O)= 
(&,/a) cos0 and Z(0) = ( cEo/f12) sin0 is made here, but this choice represents a 
specific choice of gauge for the potential. Then the quantities in the square brackets 
in (5.5) vanish. The interaction in (5.3) can then be written as 

- q w 2 Z ( t ) x / c  = -p -2qE( t )x ,  (5 .6 )  

where p = n / w  is the ratio of the frequency of the field to the frequency of the 
oscillator. Thus the space-translation method gives an interaction that is different from 
the -qEx interaction by a factor of When the field is resonant with the oscillator 
( p  = l ) ,  the interactions are the same. In general the field and the oscillator are not 
in resonance, so the interactions and the corresponding state probabilities are different. 

If the harmonic oscillator is initially in its ground state at time zero and the field 
is applied, it develops into a coherent state at a later time (Heffner and Louise11 1965, 
Merzbacher 1970). For the interaction -qE( t )x ,  the probability P, = /c,I2 that the 
oscillator is in the state-4, if it is initially in the ground state, is 

P,(t) = (l/n!)lQ(wt)12" exp[- IQ(4l21. (5.7) 

The function Q is (Kobe and Wen 1982, 1980) 

Q ( z )  = ia e-iz I,' ds  e'sf(s/w), 

where the dimensionless parameter Q is 

Q = qEo(2mhw3)-"2, (5.9) 
and the function f is 

f ( t )  = E ( t ) / E o ,  (5.10) 

For the space-translation method, (5.2) can also be solved exactly. The amplitude 

l b , ( t ) / * =  (l/n!)/T(wt)12" exp[-IT(ot)12]. (5.11) 

The function T in this case where the values of A(0) and Z(0) have been chosen to 
simplify ( 5 . 5 )  is 

T ( Z )  = p - 2 Q ( Z ) ,  (5.12) 

where Q(z )  is defined in (5.8). For non-resonant situations ( p  # 1) equation (5.11) 
is different from (5.7). There cannot be two different values for the same physical 
quantity. The principle of gauge invariance determines that the correct probability for 
finding the particle in the state 4, at time t is given by (5.7) which is calculated from 
the gauge-invariant formulation, and not by (5.11) or by the velocity form of the 
interaction. 

A similar discussion holds for the velocity form of the interaction in ( 2 . 2 ) .  In the 
EDA the A2 term contributes only a time-dependent phase factor, and so it is not 
relevant for calculating probabilities. The velocity form of the interaction is 
- ( q /  mc)A(  t)p,. The vector potential A( t )  for the harmonically varying electric field 

where E ( ? )  is given in (5.4). 

b, = (4,19) in (2.14) has an absolute value which is 
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in (5.4) is obtained by integrating (2.5) to give 

A( t )  = ( c ~ ~ / n )  cos(n t+  e )  + [ A ( o )  - ( c E ~ / ~ )   COS^]. (5.13) 

The velocity form of the interaction is not well defined because of the arbitrary initial 
value A(0)  of the vector potential. Different results are obtained for different values 
of A(0) .  A vector potential A'(?) that differs from A(?) by a different initial value 
A'(0) differs from A ( ? )  by a gauge transformation with A =[A'(O)-A(O)]x in (3.5). 
For simplicity the value A(0)  = ( c E o / f l )  cos0 can be used. Vermani and Beers (1975) 
have shown for the one-dimensional harmonic oscillator that the velocity and acceler- 
ation forms of the interaction do not give the same state probabilities, and imply that 
the velocity form is correct. The relationship between the length form and the velocity 
form of the interaction for the one-dimensional harmonic oscillator has been discussed 
elsewhere (Kobe and Wen 1982, 1980), where the choice A(0)  = O  was made. For 
non-resonance the two methods do not give the same probabilities for finding the 
system in an eigenstate 4" of the unperturbed Hamiltonian Ho, and the length form 
must be used to obtain the correct gauge-invariant probability (Yang 1976, Kobe and 
Smirll978, Kobe 1979a, b, 1978). That there is a difference between state probabilities 
calculated from the velocity form and the acceleration form of the interaction does 
not necessarily imply that the acceleration form is incorrect, since the velocity form 
itself is in general incorrect. The acceleration form is indeed incorrect except on 
resonance because it does not agree with the length form, which arises from the 
gauge-invariant formulation of quantum mechanics. 

6. Conclusion 

The conclusion of this paper is not that the space-translation method is invalid in 
general, but only that extreme care must be exercised in its interpretation. For some 
problems, like the scattering of electrons in a laser beam, it leads to known results 
in a simple way (Choi et a1 1975b). However, time-dependent state probability 
amplitudes cannot be obtained correctly by merely taking the inner product of the 
unperturbed eigenfunction with the wavefunction of the space-translation method. If 
eigenstates of the unperturbed Hamiltonian Ho are to be used, the manifestly gauge- 
invariant formulation specifies that the interaction -qE(O, t )  - r must be used in the 
EDA. It is necessary to transform from the space-translation wavefunction 1I' to the 
wavefunction 4' obtained from the length form of the interaction before taking the 
inner product with an eigenstate 4, of the unperturbed Hamiltonian Ho to obtain the 
probability amplitude that the system is in the state 4,,. Failure to do so leads in 
general to incorrect results. Only when Z ( t )  and A ( t )  are both zero will equation 
(2.14) be equal to (3.13) times a time-dependent phase factor which does not affect 
the probability. 

In the EDA it is common to think that with the unperturbed Hamiltonian Ho the 
interactions in the length form ( -qE - r ) ,  the velocity form (-qA - p / m c ) ,  and the 
acceleration form (-42 * V V / m c )  are all equivalent interactions (Power and 
Thirunamachandran 1978). In this paper we show that for a charged harmonic 
oscillator in a harmonically varying electric field the usual application of the acceleration 
form does not give the same result for the probability of finding the system in an 
unperturbed state 4" as the length form. In previous papers (Kobe and Wen 1982, 
1980) we showed that for the same problem the velocity form does not in general 
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give the same probability as the length form. There cannot be more than one correct 
probability for finding the system in the same state. Gauge invariance specifies that 
when the unperturbed Hamiltonian Ho is used, the length form of the interaction must 
be used (Yang 1976, Kobe and Smirl 1978, Kobe 1979a, b, 1978). In general, any 
gauge can be used in the manifestly gauge-invariant formulation. However, it is only 
when the vector potential can be chosen to be zero, as it is when the EDA is made and 
the scalar potential is taken as the length form, that the energy operator reduces to 
H,, the unperturbed Hamiltonian. 

In a recent paper (Ferrante and Leone 1982) it was shown that the space-translation 
method gives essentially the same results as the conventional treatment using the 
velocity form of the interaction in atomic collision problems. Only the matrix elements 
of the S-matrix were examined in that paper. If it is assumed that the interaction is 
switched on and off adiabatically so that at infinite time the A(?) and Z ( t )  in (3.13) 
are zero, equation (3.13) reduces to 6, in (2.14) times a phase factor. The consider- 
ations of the present paper are for all times including the time during which the 
electromagnetic field remains on. 
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